3.2474 \(\int \frac{(3+5 x)^{3/2}}{\sqrt{1-2 x} (2+3 x)^3} \, dx\)

Optimal. Leaf size=93 \[ -\frac{\sqrt{1-2 x} (5 x+3)^{3/2}}{14 (3 x+2)^2}-\frac{33 \sqrt{1-2 x} \sqrt{5 x+3}}{196 (3 x+2)}-\frac{363 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{196 \sqrt{7}} \]

[Out]

(-33*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(196*(2 + 3*x)) - (Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/(14*(2 + 3*x)^2) - (363*Ar
cTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(196*Sqrt[7])

________________________________________________________________________________________

Rubi [A]  time = 0.020884, antiderivative size = 93, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {94, 93, 204} \[ -\frac{\sqrt{1-2 x} (5 x+3)^{3/2}}{14 (3 x+2)^2}-\frac{33 \sqrt{1-2 x} \sqrt{5 x+3}}{196 (3 x+2)}-\frac{363 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{196 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[(3 + 5*x)^(3/2)/(Sqrt[1 - 2*x]*(2 + 3*x)^3),x]

[Out]

(-33*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(196*(2 + 3*x)) - (Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/(14*(2 + 3*x)^2) - (363*Ar
cTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(196*Sqrt[7])

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(3+5 x)^{3/2}}{\sqrt{1-2 x} (2+3 x)^3} \, dx &=-\frac{\sqrt{1-2 x} (3+5 x)^{3/2}}{14 (2+3 x)^2}+\frac{33}{28} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} (2+3 x)^2} \, dx\\ &=-\frac{33 \sqrt{1-2 x} \sqrt{3+5 x}}{196 (2+3 x)}-\frac{\sqrt{1-2 x} (3+5 x)^{3/2}}{14 (2+3 x)^2}+\frac{363}{392} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{33 \sqrt{1-2 x} \sqrt{3+5 x}}{196 (2+3 x)}-\frac{\sqrt{1-2 x} (3+5 x)^{3/2}}{14 (2+3 x)^2}+\frac{363}{196} \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )\\ &=-\frac{33 \sqrt{1-2 x} \sqrt{3+5 x}}{196 (2+3 x)}-\frac{\sqrt{1-2 x} (3+5 x)^{3/2}}{14 (2+3 x)^2}-\frac{363 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )}{196 \sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.0365153, size = 69, normalized size = 0.74 \[ \frac{-\frac{7 \sqrt{1-2 x} \sqrt{5 x+3} (169 x+108)}{(3 x+2)^2}-363 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{1372} \]

Antiderivative was successfully verified.

[In]

Integrate[(3 + 5*x)^(3/2)/(Sqrt[1 - 2*x]*(2 + 3*x)^3),x]

[Out]

((-7*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(108 + 169*x))/(2 + 3*x)^2 - 363*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3
 + 5*x])])/1372

________________________________________________________________________________________

Maple [B]  time = 0.012, size = 154, normalized size = 1.7 \begin{align*}{\frac{1}{2744\, \left ( 2+3\,x \right ) ^{2}}\sqrt{1-2\,x}\sqrt{3+5\,x} \left ( 3267\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{2}+4356\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x+1452\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) -2366\,x\sqrt{-10\,{x}^{2}-x+3}-1512\,\sqrt{-10\,{x}^{2}-x+3} \right ){\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^(3/2)/(2+3*x)^3/(1-2*x)^(1/2),x)

[Out]

1/2744*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(3267*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+4356*7
^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x+1452*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^
2-x+3)^(1/2))-2366*x*(-10*x^2-x+3)^(1/2)-1512*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)/(2+3*x)^2

________________________________________________________________________________________

Maxima [A]  time = 4.16567, size = 103, normalized size = 1.11 \begin{align*} \frac{363}{2744} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) + \frac{\sqrt{-10 \, x^{2} - x + 3}}{42 \,{\left (9 \, x^{2} + 12 \, x + 4\right )}} - \frac{169 \, \sqrt{-10 \, x^{2} - x + 3}}{588 \,{\left (3 \, x + 2\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(2+3*x)^3/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

363/2744*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 1/42*sqrt(-10*x^2 - x + 3)/(9*x^2 + 12*x
+ 4) - 169/588*sqrt(-10*x^2 - x + 3)/(3*x + 2)

________________________________________________________________________________________

Fricas [A]  time = 1.67853, size = 254, normalized size = 2.73 \begin{align*} -\frac{363 \, \sqrt{7}{\left (9 \, x^{2} + 12 \, x + 4\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) + 14 \,{\left (169 \, x + 108\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{2744 \,{\left (9 \, x^{2} + 12 \, x + 4\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(2+3*x)^3/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

-1/2744*(363*sqrt(7)*(9*x^2 + 12*x + 4)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 +
 x - 3)) + 14*(169*x + 108)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(9*x^2 + 12*x + 4)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**(3/2)/(2+3*x)**3/(1-2*x)**(1/2),x)

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Giac [B]  time = 2.37965, size = 347, normalized size = 3.73 \begin{align*} \frac{363}{27440} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{121 \,{\left (3 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{3} + 1400 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}\right )}}{98 \,{\left ({\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(2+3*x)^3/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

363/27440*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))
^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 121/98*(3*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt
(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3 + 1400*sqrt(10)*((sqrt(2)*sqrt(-
10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))))/(((sqrt(2)*sqrt(-
10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^2